Documentation

Learn how to build and deploy intelligent agents with Flunk.

Introduction

Flunk is a powerful platform for building, training, and deploying intelligent agents. Our framework makes it easy to create AI-powered applications that can understand context, learn from interactions, and solve complex problems.

const agent = new FlunkAgent({ model: 'gpt-4', context: 'development', capabilities: ['code', 'analysis'] }); await agent.train(customData); const response = await agent.chat("Let's solve this!");

Installation

Get started with Flunk by installing our package via npm:

npm install @flunk/core

Or using yarn:

yarn add @flunk/core

For advanced features, you might also want to install additional packages:

npm install @flunk/agents @flunk/models @flunk/training

Quick Start

Create your first intelligent agent in just a few steps:

import { FlunkAgent } from '@flunk/core'; // Initialize agent const agent = new FlunkAgent({ model: 'gpt-4', temperature: 0.7, maxTokens: 2000 }); // Add capabilities await agent.addCapabilities([ 'natural-language', 'code-generation', 'analysis' ]); // Start conversation const response = await agent.chat('Hello, can you help me with coding?');

Agents

Agents are the core building blocks of Flunk. Each agent can be customized with specific capabilities, knowledge, and behaviors.

// Create specialized agent const codeReviewAgent = new FlunkAgent({ model: 'gpt-4', role: 'code-reviewer', context: [ { role: 'system', content: 'Expert in code review and best practices' } ], capabilities: ['code-analysis', 'security-check', 'optimization'] }); // Add custom knowledge await codeReviewAgent.learn('./data/coding-standards.json'); // Start code review const review = await codeReviewAgent.analyze(sourceCode);

Models

Flunk supports various language models and allows easy switching between them:

// Available models const models = { 'gpt-4': { maxTokens: 8192, features: ['code', 'analysis'] }, 'claude-3': { maxTokens: 100000, features: ['long-context'] }, 'palm-2': { maxTokens: 4096, features: ['structured-output'] } }; // Switch models dynamically await agent.switchModel('claude-3', { temperature: 0.8, topP: 0.9 });

Training

Customize your agents with domain-specific knowledge and behaviors:

// Prepare training data const trainingData = { conversations: [...], examples: [...], rules: [...] }; // Train the agent await agent.train(trainingData, { epochs: 5, validationSplit: 0.2 }); // Save trained state await agent.save('./models/trained-agent');

Deployment

Deploy your agents to production environments:

import { FlunkDeploy } from '@flunk/deploy'; const deployment = new FlunkDeploy({ agent, environment: 'production', scaling: { min: 1, max: 10, target: 'cpu' }, monitoring: true }); await deployment.start();

Monitoring

Track your agents' performance and behavior in real-time:

import { FlunkMonitor } from '@flunk/monitor'; const monitor = new FlunkMonitor(agent, { metrics: ['performance', 'accuracy', 'latency'], alerts: { errorRate: { threshold: 0.01, action: 'notify' }, latency: { threshold: 500, action: 'scale' } } }); monitor.on('alert', (metric, value) => { console.log(`Alert: ${metric} exceeded threshold: ${value}`); });

Scaling

Scale your agent infrastructure to handle increased load:

import { FlunkCluster } from '@flunk/scale'; const cluster = new FlunkCluster({ agents: [agent1, agent2, agent3], loadBalancer: { strategy: 'round-robin', healthCheck: true }, autoScale: { metric: 'requests', target: 1000, cooldown: 300 } }); await cluster.start();